B.A./B.Sc. $3^{\text {rd }}$. Semester

 CHEMISTRY

 CHEMISTRY
 (Physical Chemistry-B)

Time Allowed-3 Hours]
[Maximum Marks-35
Note :-Attempt FIVE questions in all, selecting at least ONE question from each section. The fifth question may be attempted form any section. Each question carries 7 marks. Log tables may be asked for.

SECTION-A

1. (a) For an ideal gas, show that $\mathrm{PV}^{\mathrm{r}}=$ constant.
(b) Show that for isothermal expansion of an ideal gas, work done in a reversible process is greater than in irreversible process.
(c) The Van der Waal constants 'a' and 'b' for a gas are 0.21 and 0.017 in $^{\mathrm{dm}^{3}}$ atm units. Calculate the inversion temperature of the gas.

2,3,2
2. (a) Deduce an expression for Joule-Thomson coefficient.
(b) While E is a definite quantity, q and w are not definite properties. Comment on this statement.
(c) Four moles of an ideal gas expand reversibly and isothermally at $300^{\circ} \mathrm{K}$ from a volume of $1.5 \mathrm{dm}^{3}$ to $3.0 \mathrm{dm}^{3}$. Calculate $\mathrm{q}, \mathrm{w}, \Delta \mathrm{U}$ and $\Delta \mathrm{H}$ for the process. $\left(\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right) \quad 2,1,4$

SECTION-B

3. (a) State second law of thermodynamics in different ways. What was the need for this law?
(b) Calculate the standard enthalpy of formation of acetylene from the heat of combustion of $\mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}$ (graphite) and H_{2} given as $-1300 \mathrm{~kJ} \mathrm{~mol}^{-1}$, $-395 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $-286 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. 2.5,4.5
4. (a) Discuss in detail the cornot reversible cycle for establishing the maximum convertibility of heat into work.
(b) Taking entropy as a function of T and V , show that

$$
\left(\frac{\partial S}{\partial V}\right)_{T}=\frac{R}{V} .
$$

SECTION-C

5. (a) Explain Nernst heat theorem. How does it lead to the emergence of third law of thermodynamics?
(b) Find the molar increase in $\mathrm{E}, \mathrm{H}, \mathrm{S}, \mathrm{G}$ and A in expanding one litre of an ideal gas at $27^{\circ} \mathrm{C}$ to 100 liters at the same temperature.
6. (a) Under what conditions A and G can be used as criteria for thermodynamic equilibrium and spontaneity?
(b) Give thermodynamic derivation of law of mass action.
(c) Calculate the equilibrium constant (K) for the reaction :
$2 \mathrm{NOCl}(\mathrm{g}) \rightleftarrows 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$ at $400^{\circ} \mathrm{K}$.
Given : $\Delta \mathrm{H}^{\mathrm{o}}=80 \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta \mathrm{~S}^{\circ}=120 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at $400^{\circ} \mathrm{K}$.

2,2,3

SECTION-D

7. (a) State and derive Nernst distribution law. Elaborate its application in the process of extraction.
(b) Outline the principle of stream distillation. How will you find the molecular mass of a liquid by means of it?
3.5,3.5
8. Explain the following terms giving suitable examples :
(a) Triple point
(b) Peritectic point
(c) Eutectic point
(d) Azeotrope

2,2,2,1

